
Demystifying Cloud Benchmarking
Tapti Palit

Department of Computer Science
Stony Brook University

tpalit@cs.stonybrook.edu

Yongming Shen
Department of Computer Science

Stony Brook University
yoshen@cs.stonybrook.edu

Michael Ferdman
Department of Computer Science

Stony Brook University
mferdman@cs.stonybrook.edu

Abstract—The popularity of online services has grown expo-
nentially, spurring great interest in improving server hardware
and software. However, conducting research on servers has tra-
ditionally been challenging due to the complexity of setting up
representative server configurations and measuring their perfor-
mance. Recent work has eased the effort of benchmarking servers
by making benchmarking software and benchmarking instructions
readily available to the research community.

Unfortunately, the existing benchmarks are a black box; their
users are expected to trust the design decisions made in the
construction of these benchmarks with little justification and few
cited sources. In this work, we have attempted to overcome this
problem by building new server benchmarks for three popular
network-intensive workloads: video streaming, web serving, and
object caching. This paper documents the benchmark construction
process, describes the software, and provides the resources we
used to justify the design decisions that make our benchmarks
representative for system-level studies.

I. INTRODUCTION

The past two decades have seen a proliferation of online
services. The Internet has transitioned from being merely a
useful tool to becoming a dominant part of life and culture.
To support this phenomenal growth, the handful of computers
that were once used to service the entire online community have
transformed into clouds comprising hundreds of thousands of
servers in stadium-sized data centers. Servers operate around
the clock, handling millions of requests and providing access
to petabytes of data to users across the globe.

Driven by the constantly rising demand for more servers and
larger data centers, academia and industry have directed sig-
nificant efforts toward improving the state-of-the-art in server
hardware architecture and software design. However, these
efforts often face a number of obstacles that arise due to the
difficulty in measuring the performance of server systems.

While traditional benchmarks used to measure computer per-
formance are widely accepted and easy to use, benchmarking
of server systems calls for considerably more expertise. Server
software is complex to configure and operate, and requires
tuning the server’s operating system and server software to
achieve peak performance. Whereas typical datasets for tra-
ditional benchmarks are intuitive to identify, the datasets for
server systems are diverse and include not only the contents
of the data, but also the frequency and the access patterns
to that data. Moreover, while the performance of traditional
benchmarks is easily defined as the time taken to complete
a unit of work, quantifying the performance of a server is

inherently more challenging because it must take into account
the quality of service (latency of requests) and not just the peak
raw throughput.

Several recent projects [1], [2] have begun to address the
challenges of benchmarking servers faced by the research
community. These efforts have made great strides in identifying
the relevant server workloads and codifying performance mea-
surement methodologies. They collected the necessary bench-
marking tools and have been disseminating instructions for
setting up server systems under test, configuring software that
simulates client requests, and generating synthetic data sets and
statistical distributions of request patterns. As a result, the effort
needed to benchmark server systems for a typical researcher has
gone down drastically.

Unfortunately, although acknowledging their benefits, we
identified a core drawback of the existing server benchmarking
tools. While they provide the software and installation direc-
tions, the existing benchmark suites do not readily provide
justification for the myriad decisions made in the construction
of the benchmarks. The existing benchmark tools are essentially
a black box; users of these tools are called upon to implicitly
trust the decisions that were made in their design. The design
choices for the existing benchmarks and the justifications for
these choices are not clearly cited and therefore do not allow
users to make a decision regarding the actual relevance of
these benchmarks. Moreover, when some of the design choices
become dated, a revision of the benchmarks to make them rep-
resentative of the new server environment becomes necessary.
However, in the existing benchmarks, these decisions remain
undiscovered without deep investigation of the tools.

This paper chronicles our experience in setting up new
server benchmarks with explicitly justified design choices. In
this work, we concentrate on benchmarking three of the most
popular network-intensive online applications:

• Video Streaming services dominating the Internet network
traffic [3].

• Web Serving of dynamic Web2.0 pages performed by the
most popular websites in the world [4].

• Object Caching of data used extensively in all popular
cloud services [5].

To the extent practical, we document the tools that we use,
leveraging prior work and expertise. Wherever possible, we
explicitly describe the decisions that were made in the construc-
tion of our benchmarks and cite the motivation and the sources



that led to those decisions. Finally, we have integrated our
benchmarks with the CloudSuite [1] and led the re-engineering
of all benchmarks in CloudSuite 3 using Dockers [6], a mech-
anism that makes it easy to use the benchmarks and documents
all of the configuration choices in clear machine-readable form.

The rest of this paper is organized as follows. We motivate
replacing the existing benchmarks in Section II and describe the
key considerations in server benchmark design in Section III. In
Section IV, we describe our benchmarks and detail the design
decisions we made in their creation. Section V present the
overview of our Docker-based benchmark deployment setup.
We present several surprising results and compare our bench-
marks to prior work in Section VI. We review the related work
in Section VII and conclude in Section VIII.

II. MOTIVATING THE CHANGE

We begin the presentation of our workloads by motivating
our decision to create new benchmarks. After using the existing
CloudSuite benchmarks [1] in several studies, we realized that
a number of decisions made in these benchmarks do not match
the current state of practice. These realizations initially moti-
vated us to fix some of the problems we observed. However,
after fixing a number of problems with the Web Serving and
Data Caching benchmarks, we realized that it is easier to use the
knowledge we gained in this process (and some of the existing
tools) to re-implement the benchmarks, forcing us through the
process of considering many of the implicit design decisions
along the way.

It is worth noting that the focus of our new benchmarks is
system-level evaluation and performance measurement. Micro-
architectural study of the CloudSuite workloads demonstrated
that vastly different cloud workloads have similar micro-
architectural characteristics [1]. In this work, we target mak-
ing the system-level behavior representative of real-world be-
havior, while the micro-architectural behavior is expected to
remain largely similar to the original CloudSuite workloads.
In Section VI-D we confirms that, from a micro-architecture
perspective, the workloads are practically the same.

A. Video Streaming

In the past, various streaming application layer protocols
were used for delivering audio and video content over IP
networks. Protocols such as the Real Time Streaming Protocol
(RTSP) were designed for media streaming and specifically tar-
geted the needs of this application. However, RTSP is a stateful
protocol that keeps track of user sessions on the server, making
it difficult to scale out the service horizontally. Moreover, the
common RTSP implementations used UDP, which presented
problems for clients behind network address translation (NAT)
proxies [7]. Because of this, video-streaming websites such
as YouTube and Netflix built their streaming services on the
Hypertext Transfer Protocol (HTTP) [8]. Using HTTP allows
stateless servers that can be easily scaled out in modern
environments and permits the use of existing battle-tested high-
performance web servers such as NGINX [9] as the core of
these streaming services. Because the existing video-streaming

workload from the CloudSuite [1] was built for RTSP, both the
server and the client infrastructure of the benchmark needed
to be replaced to make the workload representative of modern
video-streaming services.

B. Web Serving

In older generation websites, the user’s interaction consisted
primarily of reading content and periodically clicking on URLs
that changed the reading content of the entire page. Although
submission of web forms was supported, this was a relatively
rare operation, and the submitted data rarely if at all affected
the website content, both for the user submitting the form and
for other users. On the other hand, Web2.0 websites are more
responsive and provide a richer user experience, similar to
GUI-style applications. These websites cause the browser to
dynamically fetch small chunks of data and integrate it into
parts of the webpage, instead of loading the entire webpage
content at once. Because of this, the amount of data transferred
per request is significantly less than older web applications
where the whole page had to be reloaded for each request.

The CloudSuite [1] Web Serving workload was intended
to represent the new Web2.0 paradigm. However, the Olio
project [10] used for this benchmark was written as a bench-
mark and was never in use in a production environment. In fact,
a large fraction of the requests made in this benchmark were
requests for static images, a task that is commonly outsourced
to content distribution networks (CDNs) in production systems.
Moreover, the fraction of dynamic requests in the benchmark
corresponded to the situation circa 2008. We replaced the
benchmark website with a more representative package of a
production system, with a larger fraction of small dynamic
requests, that aligns more closely with modern practices. Impor-
tantly, while we deemed the server-side software inappropriate,
the Faban [11] framework used to emulate web clients in the
original CloudSuite benchmark is a good fit and we leveraged
it in the creation of our own web serving benchmark.

C. Object Caching

The Memcached server software used for the Data Caching
benchmark in the CloudSuite [1] remains one of the most
popular and most-widely used cloud applications [5]. However,
as we started heavily using this benchmark, we discovered
a number of drawbacks in the software that simulated client
requests to the server. As we delved deeper into understanding
the benchmark behavior, we realized that its behavior was
not representative of real Memcached deployments. For ex-
ample, while UDP-based GET requests are common in real
deployments [12], the client included in the benchmark suite
threw an “Unimplemented” exception when configured for
UDP. We were interested in using the benchmark because it
included the “Twitter” dataset, which was appealing because it
appeared to represent a real-world use case of the application.
However, upon further investigation, we discovered that the
client included a bug that performed incorrect scaling of the
dataset. We therefore decided to pursue implementing our own



client that included support for UDP requests and correct
dataset scaling.

III. KEY CONSIDERATIONS FOR BENCHMARK DESIGN

Benchmarking cloud applications has unique challenges over
traditional benchmarking. Traditional benchmarking measures
wall-clock time, which is the time needed to complete an
operation, with no other considerations. On the other hand,
because the ultimate goal of cloud applications is end-user
satisfaction, measuring the performance of server applications
requires also taking into account the Quality-of-Service (QoS)
as a proxy for end-user satisfaction. QoS is typically specified
as a maximum latency L for a percentile P of all requests,
meaning that P% of all requests must be completed within
latency L. As a result, measuring performance under QoS
constraints implies iteratively applying different loads to find
the peak load under which the QoS requirements are met.
Importantly, such performance measurements imply that the
measured system is under-utilized at its peak performance
(higher utilization would yield higher throughput, but the QoS
requirements would not be met).

Moreover, benchmarking cloud applications requires faith-
fully mimicking the behavior of real clients. In case of video-
streaming servers, some videos are accessed more frequently
than others; Web2.0 client requests are dominated by small
dynamic AJAX requests; object cache systems handle a wide
range of key and object sizes and requests, all of which
can affect the observed server throughput [13]. To properly
measure a server’s performance, the statistical distribution of
request sizes and popularity emulated by the benchmarking tool
must be representative of real-world setups [12], [14]. When
designing benchmarks for cloud applications, one must ensure
that the request mix closely resembles real clients.

Finally, we note that benchmarking is typically performed in
a lab environment, where client machines connect to the server
over a high speed network. Each client machine simulates the
behavior of hundreds or thousands of real clients. Therefore,
care must be taken to ensure that each of the simulated clients
is operating in an environment similar to that of real clients.
We found this of particular concern for video streaming, where
network traffic is bursty because of different media-streaming
clients requesting chunks of the file at different points in time.
Without artificially-imposed limits, it is possible for a single
simulated client to gain access to the entire bandwidth of the
high-speed link. Such behavior is not representative of real
client environments that experience a range of limited and
varying bandwidth capabilities. The benchmarking environment
must provide a realistic setup for simulated clients to ensure
that the behavior that the server exhibits resembles the behavior
observed in real deployments.

IV. OUR BENCHMARKS

We base our benchmarks on several production applications:
the NGINX-based HTTP video-streaming server, the Elgg
social networking engine [15], and the Memcached key-value
store.

For benchmarking video-streaming applications, we deploy a
video-streaming server on NGINX with video files in different
video resolutions. We ensure that the distribution of video
files and video resolutions is similar to that of popular video-
streaming services such as YouTube. We use the methodology
described in [16] for our work, basing our client on httperf [17],
a tool from HP Labs. Accesses to videos follow a popularity
distribution [18]; we therefore take into account the difference
in the popularity of the videos when simulating the clients.

Elgg is a production-ready, actively used and developed
social networking engine, which has similar functionality to
Facebook. The bulk of the workload that dynamically generates
web responses is performed by PHP, one of the most-popular
platforms for developing dynamic websites [4]. Inspired by
the CloudSuite [1], we use the Faban framework to develop
a benchmark for Elgg. Faban uses a light-weight Java thread
for each client, allowing the simulation of thousands of clients
on a single machine with relatively low memory requirements.

Memcached is a key-value store server used by some of
the most popular websites [12] and is a representative object
caching application. We developed a new Memcached bench-
marking client called Memloader. Memloader allows users
to specify arbitrary key-size, value-size and item-popularity
distributions using a dataset file and provides first-class support
for UDP requests. With these features, Memloader can accu-
rately emulate real-world clients. In addition to Memloader, we
developed a set of automation scripts to simplify the task of
benchmarking a Memcached server.

A. Video-streaming benchmark

Streaming video is a content delivery method in which
videos are continuously delivered to the client, instead of being
downloaded at once. The video is progressively transferred to
the user as it is being watched.

Two techniques – pacing and chunking – are used to stream
video over HTTP. The video-streaming client’s requests to the
server are “paced,” ensuring that the video-streaming client
retrieves only the part of the video that will be played back in
the near future. HTTP/1.1 Range Requests are used to request
one “chunk” of the video at a time. At the start of playback,
the streaming video client prefetches a few chunks of video
content. It then waits for these chunks to be viewed by the
user. As the fetched chunks are consumed and the buffers are
emptied, the next chunk in the sequence is fetched.

Millions of videos are uploaded to video-streaming services,
but only a small fraction of them are popular. The popularity of
videos follows a Zipf distribution [18]. A small percentage of
the videos are very popular and are accessed regularly, while the
majority of the videos are accessed rarely. The request patterns
of our benchmark reflect this popularity distribution.

The bitrate at which content is encoded determines the stream
quality. Encoding content at a higher bitrate yields a higher
quality stream, increasing the amount of data that needs to
be downloaded to play the video. If a low-bandwidth client
attempts to view a high-quality video, the speed at which the
buffers are replenished could be lower than the speed at which



the video is viewed. The client will experience pauses during
viewing due to “buffering,” causing the viewer to become
frustrated and potentially stop the video playback.

To solve this problem, the quality of the video stream is
varied depending on the available network bandwidth of the
client. Videos uploaded to the video-streaming service are
stored encoded at different bitrates, creating different quality
versions of the same video, each of a different size.

1) System to benchmark – NGINX based Video streaming:
Although our infrastructure can benchmark any HTTP-based
video-streaming server, we select the NGINX server. NGINX is
an event-driven HTTP server built around an asynchronous I/O
architecture. Event-based I/O systems allow a single application
thread to handle multiple file descriptors, unlike the thread-
based I/O models (employed by servers such as Apache) which
require one thread or process per client. A single NGINX thread
can service many client connections, making NGINX highly
scalable and performant. For these reasons, prominent video-
streaming services use NGINX for content distribution [19].

We enable the following NGINX configuration options:

1) Sendfile: Sendfile is a system call that directly copies
contents from one file descriptor to another within the
kernel. Enabling sendfile speeds up copying of data
between the video file descriptor and the network socket
descriptor by avoiding unnecessary memory copies and
context switches.

2) Epoll event mechanism: Under Linux, NGINX supports
the select, poll, and epoll event mechanisms. We use the
Epoll mechanism because it has the best performance and
scalability [20].

3) Persistent connections: HTTP persistent connections en-
able one TCP connection to be reused for multiple
requests. This mitigates the overhead of initiating and
tearing down TCP connections during video playback. By
default, in HTTP/1.1, all connections are persistent for a
fixed duration specified by a timeout value. The default
installation of NGINX specifies this value as five seconds.
We set the timeout to 60 seconds, which exceeds the inter-
chunk interval at all bitrates and allows the server to shut
down connections only if they are no longer used by the
client for video streaming.

2) Benchmarking Tools: We base our benchmarking work
on the methodologies and tools presented in [16]. The bench-
marking tools consist of an enhanced httperf client that acts
as the benchmark driver, a file-set generator, and a httperf log
generator. The file-set generator generates the videos on the
video-streaming server. The httperf log generator generates a
log simulating the sequence of URLs accessed by the clients.
The httperf client executes the benchmark by replaying the log
of requests against the server under test.

a) Benchmarking Driver: Our benchmarking client driver
is based on httperf [17], which was enhanced in [16]. The
httperf tool, originally developed at HP Labs, measures web
server performance by simulating the behavior of many concur-

rent web users. For our benchmark, we developed a workload
generator videosesslog, based on the design of wsesslog.

Wsesslog allows the specification of the behavior of individ-
ual client sessions through its workload generator. A session
comprises of a sequence of bursts, spaced out by the user
think-time. Each burst is one or more requests to the server.
The wsesslog workload generator allows the specification of
parameters of these client sessions, such as the sequence of
URIs to access and the think-time between requests. In our
workload, the think-time parameter is used to simulate “pacing”
by separating requests for consecutive chunks of a video,
simulating gradual viewing.

We specify a time-out period for each request. If the response
to the request is not received within the timeout period, the re-
quest is considered as causing buffering. Buffering corresponds
to frustrated users of the video-streaming service – in other
words, these are violations of Quality-of-Service.

In addition to the features supported by the wsesslog work-
load generator, the videosesslog workload generator supports
multiple input log files. The user can specify multiple input logs
and a probability distribution. Videosesslog generates requests
from each of these input logs, according to the specified prob-
ability distribution, enabling the user to specify the percentage
of requests that will be generated from each of the input logs.
The user can specify requests for different video qualities in
different input logs and then specify the probability distribution,
described in Table I, for the ratio of accesses from each of
these input logs. Videosesslog allows binding each input log to
a different local IP on the client machine. Doing this enables
dummynet [21] rules that limit network bandwidth at each local
IP to simulate realistic network conditions.

The httperf tool gathers statistics, such as the percentage of
connections which timed-out, average reply rate, and average
request rate, and summarizes and displays these statistics at the
end of the benchmark execution.

b) Request mix generation tool: As discussed in Sec-
tion IV-A, video popularity follows a Zipf distribution. A small
subset of videos are more popular and are accessed more
frequently. The make-zipf [17] program is used to generate the
list of videos and corresponding videosesslog logs, such that
the requests reflect the Zipf distribution, with a configurable
Zipf exponent. Similar to [16], we use Zipf exponent -0.8 for
our experiments. This list contains the name of the video files,
their duration, and popularity rank. The list of videos is then
read by the gen-fileset tool, which creates the video files.

c) File-set generation tool: The file-set generator, gen-
fileset [17], reads the list of videos and creates the files on
the video-streaming server. The number of files generated, and
therefore the dataset size, are configurable. Video-streaming
servers store different quality versions of the same video. We
support Low Definition (240p), two Standard Definition (360p,
480p), and High Definition (720p) resolutions. We generate all
videos at Low Defintion (240p) and two Standard Definition
(360p, 480p) resolutions. Additionally, High Definition (720p)
resolution is generated for 20% of the videos. The size of a



TABLE I
BROADBAND CLIENTS - BANDWIDTH DISTRIBUTION

Bandwidth Percentage of users
Above 15 Mbps 19%
10 Mbps - 15 Mbps 20%
4 Mbps - 10 Mbps 34%
1 Mbps - 4 Mbps 27%

video file depends on its bitrate and its duration. We use the
bitrates suggested by YouTube [22] for our calculations.

3) Benchmark Setup: We simulate clients with different
bandwidth capabilities. From Akamai [23], we obtain the dis-
tribution of the network speed for worldwide broadband users
in 2015. The percentage of clients with different bandwidth
capabilities are presented in Table I.

We use dummynet [21] to emulate clients with different
bandwidth. Dummynet is a network emulation tool that can
perform network bandwidth shaping. It can filter packets
based on any combination of parameters that identify a TCP
connection (Source/Destination MAC-address/IP-address/Port-
number). These filters can be used to forward the packets
through a virtual pipe, which is configured with attributes such
as a bandwidth cap or traversal latency. We configure multiple
IP aliases on each of the client machines and use dummynet
to filter packets on the basis of these IP aliases into different
pipes. On each pipe, we configure a bandwidth limit for each
TCP connection that passes through the pipe.

B. Web2.0 benchmark

Web2.0 is a set of principles that guided the shift in the
direction of web development after the year 2001 [24]. Web2.0
websites have certain characteristics that cause these workloads
to be different from the workloads of older generation websites.
Older generation websites typically served static content, while
Web2.0 websites serve dynamic content. Web2.0 websites have
richer user-interfaces that engage the user more frequently than
older websites.

A Web2.0 website delivers a service or platform, unlike
traditional websites. For example, the social networking site
Facebook delivers a social networking platform to the users.
Most of the content on these websites consists of data provided
by the users of the website and not by the web developer.
The content is dynamically generated from the actions of other
users and from external sources, such as news feeds from other
websites. Because of this, writes to the backend database are
frequent and the data written is consumed by other users.

1) System to benchmark – Elgg: The Elgg social networking
engine is a Web2.0 application developed in PHP, similar in
functionality to the popular social networking engine Facebook.
Elgg is currently used by the Australian Government, the
New Zealand Ministry of Education, Wiley Publishing, the
University of Florida, and many other organizations [25].

Elgg allows users to build a network of associations or
friends. It provides a platform for the users to share content.
Elgg includes a microblogging platform, called Elgg Wire,
which can be used to share text, image, or video content with

other users. Posting content on this microblogging platform
makes it available to be read by other users. This is similar
to Facebook’s popular Wall functionality. Every user has a live
feed of content shared by their network of friends. This live
feed is called Elgg River. Several plugins exist to custom-tailor
the base functionality with additional features desired for a
particular installation.

The Elgg platform and the available plugins allow the user to
carry out a variety of operations, such as sending and receiving
chat messages, posting on Elgg Wire, and retrieving the latest
posts. These operations are AJAX based, sending and receiving
many small requests. The workload is dominated by these
frequent AJAX requests.

Elgg uses PHP as its server-side scripting language and uses
MySQL as its database backend. Similar to the setup used at
Facebook [12], we enable Memcached to cache the results of
database queries. We enable the Zend Opcache, which is a PHP
“accelerator” commonly used in production environments. We
change the default storage engine of MySQL to InnoDB to
support a large number of concurrent reads and writes, needed
to support many concurrent users to the website.

2) Benchmarking Tools: We use the Faban [11] framework
to develop our benchmark for Elgg. Faban is a Java-based
benchmark development and execution tool with two main
components: Faban Driver framework and Faban Harness.

Faban Driver is a framework that provides an API that can
be used to quickly develop a benchmark. A benchmark driver
is defined by the operations it runs. The request mix for the
benchmark is specified by the list of operations to be performed
and the probability of each operation.

The Faban Harness comprises an Apache Tomcat instance
that hosts a web application which automates deploying and
running the benchmark. At the end of the benchmark run,
a report is generated that contains statistics such as the suc-
cess/failure count of each operation, the response time, and the
number of quality-of-service violations.

3) Faban Benchmark Details: Our benchmark takes into
account the fact that different operations occur with different
frequencies. In the Faban driver for our benchmark, we specify
a function for each of the operations in Table II. In the mix,
we assign higher probability for more common operations,
such as updating the live feed, posting on walls, and sending
and receiving chat messages. We assign a lower probability
for operations such as login and logout, reloading the home
page, and creation of new users, as these are carried out less
frequently. Also, each operation is assigned an individual QoS
latency limit. Table II shows our request mix and the QoS
latency limit for each operation. We derive these values by
extrapolating Facebook’s page load time, which is reported as
2.93 seconds by Alexa [26].

We specify a Quality-of-Service (QoS) requirement of 95%
for our benchmark. 95% of all operations performed must meet
the QoS limit specified for that operation. If less than 95% of
the operations meet the QoS latency limit, the Faban driver
deems the benchmark run as failed.



TABLE II
ELGG – REQUEST MIX, QUALITY-OF-SERVICE LIMITS

Request Percentage QoS (in seconds)
Create new user 0.5% 3

Login existing user 2.5% 3
Logout logged in user 2.5% 3

Access home page 5% 1
Wall post 20% 1

Send friend request 10% 1
Send chat message 17% 1

Receive chat message 17% 1
Update live feed 25.5% 1

Our benchmark clears the transactional data between each
run to avoid any possible performance degradation due to large
database tables and to ensure that the execution environment is
similar from one run to the next.

4) User prepopulation tool: Before running the benchmark,
we must prepopulate the database with Elgg users. These are
simulated clients who will log in to the system and perform
operations. We developed the UserSetup utility for this purpose.
This utility can create a configurable number of users and
forward their login credentials to the Faban benchmark driver.
When the benchmark is launched, each benchmark client thread
logs in with one of these users’ credentials and proceeds to
perform the operations described in Table II as that user. The
number of pre-generated users determines the maximum num-
ber of client threads that can be launched, in turn determining
the maximum scale of the benchmark.

C. Object Caching benchmark

In order to improve performance, web servers use object
caching systems to cache the results of expensive computations,
thus making object caching an important workload to study. In
this section, we present a benchmark for Memcached, which is
a popular, open-source, object caching system.

1) System to benchmark – Memcached: Memcached is a
popular object caching system, which is typically used by web
servers to cache the results of expensive database queries. It is
a completely in-memory key-value store. It supports both TCP
and UDP protocols. Memcached typically acts as an object-
cache for web servers, and a single web request can result in
many Memcached requests. Therefore, to avoid delaying web
requests, Memcached requests need to be serviced with low
latency. The latency requirements for Memcached are typically
1 to 2ms. A single Memcached request requires very little
processing. So a Memcached server can serve over a million
requests per second, which is a significantly higher throughput
than those of other workloads. The benchmark is capable
of benchmarking a single Memcached server or a cluster of
Memcached servers. The dataset can be either replicated or
sharded across multiple servers.

Our Memcached benchmarking tool comprises two parts.
The first is Memloader, an efficient C++ program for traffic
generation and performance statistics collection. The second is
the benchmarking harness, which is a collection of scripts for
automating the benchmarking task.

2) Benchmarking Tools – Memloader: Memloader emulates
a large number of virtual clients that perform requests to a
Memcached server. Each virtual client independently generates
requests and examines responses. If a cluster of servers or
server processes are benchmarked, a virtual client can send
requests to multiple servers. By default, Memloader spawns
one worker thread per CPU core. Half of the worker threads
are dedicated to sending requests. The other half are dedicated
to receiving responses. The separation reduces interference
between request and response activities, enabling precise timing
of request generation and accurate statistics of the response
latencies. A request-sending thread can send requests on be-
half of multiple virtual clients. Similarly, a response-receiving
thread can receive responses on behalf of multiple virtual
clients. Memloader threads are pinned to CPU cores to avoid
overhead from unnecessary thread migrations. Memloader can
send requests using ether TCP or UDP.

Key-size, value-size and item-popularity distributions can be
specified by providing Memloader a dataset file, where each
line represents a data item and specifies that item’s key size,
value size, and popularity. By populating a dataset file with ap-
propriate records, any key-size, value-size and item-popularity
distributions can be achieved. Memloader can synthesize a large
dataset from a small dataset file. Conceptually, this is done
by replicating the same dataset multiple times for use by the
virtual clients. The actual implementation stores the small file
in memory and performs the replication on the fly, ensuring a
small memory footprint. All virtual clients use the same dataset.

The performance measured by Memloader is based on the
specified target latency (e.g., 1ms). Memloader reports the
percentage of requests that completed within the target latency.
Memloader also reports the average latency, the throughput, the
number of outstanding requests, and the hit-ratio. If detailed
analysis of a server’s performance is needed, Memloader can
output the complete response latency histogram.

3) Benchmarking Harness: To automate the benchmarking
task, we provide a benchmarking harness, which is a set
of scripts. Its main functions are system configuration, peak
throughput seeking, and multi-client control.

The Memcached server under test is likely to use a high-
performance NIC. In this case, the configuration of the server
OS and NIC driver can have a significant impact on the
measured performance. For example, to get the most out of
RSS [27] support in the NIC, all CPU cores should partic-
ipate in interrupt handling. If the NIC supports a TCP flow
director [28], out-going packets of a TCP connection should be
sent out through a single queue, so that the flow director can
correctly associate the TCP connection with the queue. Also,
the CPU core responsible for handling that TCP connection’s
incoming data should handle the associated queue’s interrupts.
If the purpose of the test is to measure a server’s maximum
performance, the frequencies of all server cores should be set
to the maximum. Similarly, proper system configuration on the
client side is necessary to avoid overloading the client ma-
chines, which would yield erroneous traffic generation patterns



and latency measurements. Managing these settings manually is
a tedious and error prone task, especially when many machines
are used in the benchmarking setup. To address this problem,
the benchmarking harness automatically configures server and
client machines with peak performance settings. We provide
an example configuration harness for Intel Xeon E5v3 Linux
servers with Intel 82599ES NICs.

When benchmarking a high performance Memcached server
or a cluster of Memcached servers, a single client machine
may be insufficient to drive the requisite load. To address
this problem, the benchmarking harness supports deploying
instances of Memloader across multiple client machines and
coordinates their simultaneous execution. The harness parses
outputs from all Memloader instances and aggregates the per-
formance statistics.

A common goal for benchmarking a Memcached server is to
find the server’s peak throughput within QoS constraints. Man-
ually re-running experiments with different throughputs to find
the best performance that does not violate QoS requirements
is a tedious task. The benchmarking harness can automatically
perform a binary search for the peak throughput by repeatedly
running the benchmark at different loads and automatically
monitoring the QoS.

V. DOCKER DEPLOYMENT MECHANISM

Working with the CloudSuite 2 benchmarks, we found that
the installation and configuration process is extremely complex
and error-prone. The benchmarking software, system libraries,
and Linux kernel often create complicated dependencies that
must be maintained for the software to run correctly. However,
as newer Linux distributions are released, support for older
system libraries and kernels are gradually phased out, requiring
the benchmark user to manually resolve dependencies. More-
over, not only did the process of following the installation
instructions require significant time and effort, the provided
instructions were outdated and often not applicable to the new
Linux distributions.

To remedy this situation, we implemented our new bench-
marks using Docker containers [6]. Docker containers parcel
the benchmarks along with the complete filesystem needed to
execute them. This includes all dependencies – the benchmark-
ing software, system tools, and system libraries. Moreover,
the Dockerfile not only serves as a quick and painless way
to automatically recreate the benchmark setup, but it simulta-
neously serves as pedantic and precise documentation of the
exact dependencies, installation procedures, and configuration
settings of the benchmark.

The Docker containers for our benchmarks are released
on Docker Hub [29], a free globally-accessible repository
for Docker containers. The benchmark user can perform a
“docker pull” to download these containers into their local
machines. Once downloaded, the user can run the containers
by issuing a “docker run” command. Dockers greatly simplify
the benchmark deployment process, distilling it into two simple
commands. Dockers enable benchmark installation and bring-
up in seconds instead of days and ensure stable and consistent

benchmark setups for each installation. Based on the positive
experience we gained in bringing up our new workloads with
Dockers, this approach to benchmark distribution has been
adopted in CloudSuite 3 for all of the benchmarks.

VI. RESULTS

In this section, we demonstrate several key aspects of
our benchmarks (CloudSuite 3) by comparing them to their
counterparts from CloudSuite 2. First, we examine the results
of running the benchmarks on a typical server and compare
three notable metrics: request mix, I/O utilization, and in-
terrupt distribution. Next, we present two case studies that
demonstrate how the key considerations for cloud benchmark
design, outlined in section III, affect server characteristics and
measured performance. Finally, using the Video-streaming and
Memcached workloads, we show that, although the system-
level behavior of these workloads is radically different, the
micro-architectural behavior when running these benchmarks
is similar to the previous generation CloudSuite workloads.

A. Comparison of Request Mix

We contrast the request mixes of our video-streaming and
Web2.0 workloads with the CloudSuite 2 workloads for the
respective applications to highlight the key system-level differ-
ences between them.

1) Request Mix for Video Streaming: As described in Sec-
tion IV-A, different video-streaming clients have different band-
width capabilities and the video stream quality is selected based
on the bandwidth of each client. Moreover, only a fraction of
all videos are available in a High Definition format. Because
video resolution has a direct impact on the file size of the video,
the request mix of the benchmarking tool must be similar to
real-world situations in order to accurately represent the server
and network characteristics.

Figure 1 compares the request mix of our NGINX-based
benchmark with the request mix of the CloudSuite 2 RTSP-
based benchmark. Our new benchmark supports four video
qualities: 240p, 360p, 480p and 720p, whereas the older Cloud-
Suite 2 benchmark supports three video qualities: Low (160p),
Medium (240p), and High (360p). In the default configuration,
the CloudSuite 2 benchmark accesses videos of all three
qualities with equal probability. In contrast, our workload takes
into account the varying bandwidth availability of broadband
clients, as described in Table I, and mimics real-world behavior
where not all videos are available in High Definition.

2) Request Mix for Web2.0 benchmarks: As discussed in
section III, Web2.0 clients perform many small AJAX requests.
Thus, for a large fraction of requests, the response comprises
only a few bytes, which update a small part of the webpage, in-
stead of kilobytes of data required to update the entire webpage.
Because the number of bytes transferred per request determines
the network characteristics, a workload to benchmark these
applications must be representative of this reality.

We compare the request mix of a run of our Elgg benchmark
with the request mix of CloudSuite 2 Olio benchmark. Figure 2
shows the comparison of the AJAX requests and requests that



Fig. 1. Request Mix – Video Quality

Fig. 2. Request Mix – AJAX vs Full Page Refresh

result in full page refresh. In Olio, 77% of all operations in the
request mix result in full page refreshes. On the other hand,
our Elgg benchmark consists of 89% of small, AJAX requests,
which update a small part of the webpage, and only 11% of
requests perform full page refresh.

B. Video-Streaming – Effect of Request Mix on I/O Wait%

In this section, we study the effect of the popularity dis-
tribution of a video-streaming request mix on the disk I/O
wait time, to show how the request mix of a workload has an
impact on server characteristics. As discussed in Section IV-A,
a small percentage of videos on the video-streaming server
are frequently accessed. This allows the operating system to
cache these “hot” files, thus reducing the total number of disk
accesses and speeding up reads of the less frequently accessed
videos. Ultimately, this affects the Quality-of-Service of the
video-streaming system.

For our experiments, we use a server and client machine with
the configuration described in Table III. Our fileset consists of
8000 videos, each available in 240p, 360p, and 480p video
resolutions. Additionally, 20% of the videos are available in
720p quality. The total size of the fileset is 1.1 TB.

For this experiment, we generate two request mixes – a
popularity-aware request mix and a popularity-unaware request
mix. The popularity-aware request mix takes into account the

TABLE III
EXPERIMENTAL SETUP

CPU Intel® Xeon® E5-2620 v3 @ 2.40GHz
Number of cores 12 (2 sockets, 6 per socket)
Hyperthreading Off
RAM 64 GB
NIC Intel 82599ES 10 Gbps
SAS Disk Array 10 disks, 15K RPM
OS Ubuntu 14.04.3 (kernel 3.19.0-30)

Fig. 3. IO-Wait % for Popularity-Aware and Popularity-Unaware Mix

popularity distribution of videos, as described in IV-A, and
the popularity-unaware request mix accesses all videos with
an equal probability.

Figure 3 shows the I/O-Wait% for these configurations.
The average I/O-Wait% for the popularity-aware request mix
is 22.6%, while that of the popularity-unaware request mix
is 61.2%. As a result of this, in case of the popularity-
unaware request mix, 55% of the requests fail to meet the QoS
requirements. In case of the popularity-aware request mix, only
4% of the requests fail to meet QoS. The system-level behavior
is therefore greatly dependent on this parameter and should be
selected to match real-world conditions.

C. Memcached – Effect of Interrupt Distribution

Prior work on Memcached servers has shown the importance
of factors like value size, item popularity, using UDP, and
others [13], [12]. In addition to having a realistic workload,
it is important to configure the server under test in a way that
ensures there are no artificial bottlenecks in the system. In this
section, we demonstrate the effect of interrupt distribution on
the server machine on the benchmark’s result. A Memcached
server handles hundreds of thousands of requests per second,
which corresponds to a massive number of network interrupts
on the server. To make sure a multi-core system is not bot-
tlenecked on interrupt handling, the server NIC requires RSS
support. However, having an appropriate NIC by itself is not
sufficient. To properly configure a Memcached server with an
RSS-capable NIC, interrupts must be evenly distributed among
cores, which is often not the default behavior.

We demonstrate the impact of interrupt distribution using two
machines with identical hardware and software configuration



Fig. 4. Memcached Performance and IRQ Handling

(Table III), connected by a 10G network. The server runs Mem-
cached 1.4.25. The client sends 860K requests per second to
the server through 600 TCP connections. The dataset comprises
five million items with key size 40 bytes, value size 500 bytes,
and uniform popularity. 80% of the requests are GET and 20%
are SET. We use this simple workload to isolate and highlight
the effect of interrupt distribution. The key size and value size
are chosen according to [14]. On the server, only 6 cores (one
socket) are used, the other 6 cores are halted.

Figure 4 shows the system performance, measured as a
percentage of requests meeting the 1ms latency requirement,
as we vary the number of server cores that handle receive
interrupts. We find that the performance difference exceeds
33% as the number of interrupt-handling cores is varied from
2 to 6, demonstrating the magnitude of the impact that this
parameter has on overall system throughput. Although the
default configuration may perform some interrupt distribution
to partialy mitigate this problem, our object caching benchmark
demonstrates the configuration needed to equally distribute
interrupts to achieve peak performance from the hardware.

D. Micro-architectural Features of Workloads

We demonstrated major differences in the system-level be-
havior of our benchmarks compared to CloudSuite 2. We now
examine the micro-architectural behavior of two of the work-
loads, video-streaming and Memcached, with their CloudSuite
2 counterparts. Similar to [1], we concentrate on IPC, L1-
Dcache and L1-Icache misses, and D-TLB and I-TLB misses.

For all experiments, we use one client and one server
machine. The configuration for both the client and server
are described in Table III. To ensure a fair comparison, we
examine the server systems under identical CPU load. Figure 5
shows the comparison of the IPCs for the video-streaming
and Memcached workloads. Prior work found that the IPC
achieved by cloud workloads is relatively low [1]. We find that
the IPC of our workloads and their CloudSuite 2 counterparts
are practically the same, differing by less than 3%. Figures 6
and 7 further compare the micro-architectural behavior of the
workloads with respect to the caches and TLBs. From these
results, we conclude that the micro-architectural characteristics
of the CloudSuite 2 workloads and our workloads are similar.

Fig. 5. IPC Comparison

Fig. 6. Micro-architectural Features - Video-Streaming Workloads

Thus from the results described in sections VI-B, VI-C,
and VI-D, we see that even though the micro-architectural
characteristics of CloudSuite 2 and our new (CloudSuite 3)
benchmarks are similar, the system-level behavior differs sig-
nificantly. Thus, for the purpose of micro-architectual studies,
both CloudSuite 2 and CloudSuite 3 workloads are equally
suitable. However, for the purpose of system-level evaluation,
CloudSuite 3 workloads are more suitable because they are
more representative of real-life situations.

Fig. 7. Micro-architectural Features - Memcached Workloads

VII. RELATED WORK

There has been considerable work related to benchmarking
cloud workloads. We present a survey of the popular bench-
marking tools for video streaming, Web2.0, and object caching
(Memcached) applications.

A. Video streaming

The CloudSuite 2 includes a video-streaming benchmark
based on the Darwin video-streaming server. Darwin serves



content using the Real Time Streaming Protocol (RTSP). How-
ever, today, popular video-streaming services, such as YouTube
and Netflix, stream video using the HTTP protocol [8].

Benchlab [30] is a web application benchmarking framework
that uses trace-replays on real web browsers and gathers
statistics on both the client and the server. The Benchlab
tool was extended into the Video-Benchlab suite [31] for
benchmarking video-streaming servers. Unfortunately, because
the tool launches a separate browser instance for each simulated
user, and each browser instance uses a significant amount of
memory capacity and CPU time, the number of clients that
can be simulated by a single machine in a benchmarking setup
is severely limited. The per-client resource requirements make
Video-Benchlab impractical for studying servers under high
throughput conditions.

Methodologies for generating HTTP streaming video work-
loads were presented by [16]. Our video-streaming benchmark
makes extensive use of these methodologies and our video-
streaming benchmarking tool is based on the source code
provided as part of the work.

B. Web2.0

Olio was developed to benchmark a “typical” Web2.0 ap-
plication, a social event calendar that allows multiple users to
post social events, browse events, and “friend” other members.
The CloudSuite 2 [1] benchmarking suite includes a Faban
driver that measures the performance of Olio. However, the
Olio application is retired, no longer supported, and remains
an example of an outdated Web2.0 benchmark application that
was never used in a production environment.

Benchlab [30] (mentioned above) was originally designed
to benchmark websites, but suffers from the problem of high
per-client resource requirements, which makes it unsuitable for
launching thousands of simulated clients on a single machine.

SPECweb [32] is a popular SPEC benchmark for evaluating
web server performance. The benchmark contains three work-
loads: Banking, E-commerce, and Support. These workloads
are traditional web applications and don’t have the characteris-
tics of a modern Web2.0 website. Moreover, similarly to Olio,
SPECweb is officially retired and is no longer maintained.

C. Object Caching

CloudSuite 2 contains a Data Caching benchmarking
client [1] that can generate a workload based on a “Twitter”
dataset. However, it only supports TCP, while large-scale de-
ployments of Memcached use UDP for GET requests [12].
Like the CloudSuite 2 client, Mutilate [33] also only supports
TCP. Furthermore, it does not have the ability to control item
popularity. Memaslap [34] is a Memcached benchmarking tool
that comes with the libmemcached library. Libmemcached is a
C/C++ library that facilitates the development of clients for the
Memcached server. Memaslap supports both TCP and UDP, but
it only reports the minimum, maximum, mean, and standard
deviation for latency, without reporting the quality-of-service
percentage. Like Mutilate, Memslap does not have the ability
to control item popularity.

VIII. CONCLUSIONS

With the increase in popularity of the cloud as a platform for
delivering global-scale online services, it has become important
to benchmark cloud workloads, to continue to improve the state
of art of server systems. We attempted to use the existing
cloud benchmarks, but found drawbacks in them – the most
important one being that the benchmark design choices are not
transparent to the end-user of the benchmark. In this work,
we chronicled our experience of developing benchmarks for
three network-intensive cloud applications and documented our
design choices and rationale behind them. Specifically, we
described three cloud applications: video-streaming, Web2.0,
and object caching.

We compared our benchmarks with existing tools and
demonstrated a number of distinct differences, concentrating on
the aspects that have an impact on the results of the system-level
measurements. In particular, we highlighted how the request
mix and machine setup can have a significant impact on the
performance of the cloud application under test. Finally, we
showed that, despite major system-level performance differ-
ences, the micro-architectural behavior of the new benchmarks
is similar to the CloudSuite 2 workloads.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation (NSF) under Grant No. 1452904 and by a
gift from Cavium, Inc. The experiments were conducted using
equipment purchased through NSF CISE Research Infrastruc-
ture Grant No. 1513028.

We thank Dr. Tim Brecht and Jim Summers for their help
in the development of the video-streaming benchmark and for
providing us the source code from their prior work [16].

REFERENCES

[1] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic,
C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing
the clouds: a study of emerging scale-out workloads on modern
hardware,” in Proceedings of the seventeenth international conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’12. New York, NY, USA: ACM, 2012, pp.
37–48. [Online]. Available: http://doi.acm.org/10.1145/2150976.2150982

[2] “Googlecloudplatform – perfkitbenchmarker.” [Online]. Available: https:
//github.com/GoogleCloudPlatform/PerfKitBenchmarker

[3] “The zettabyte era: Trends and analysis.” [Online]. Avail-
able: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/VNI Hyperconnectivity WP.html

[4] “Php: Hypertext preprocessor.” [Online]. Available: http://php.net
[5] “Memcached - a distributed memory object caching system.” [Online].

Available: http://memcached.org/
[6] “Docker - build, ship, and run any app, anywhere.” [Online]. Available:

https://www.docker.com
[7] “A network address translator (nat) traversal mechanism for media

controlled by real-time streaming protocol (rtsp).” [Online]. Available:
https://tools.ietf.org/html/draft-ietf-mmusic-rtsp-nat-22

[8] A. C. Begen, T. Akgul, and M. Baugher, “Watching video over the web:
Part 1: Streaming protocols,” Internet Computing, IEEE, vol. 15, no. 2,
pp. 54–63, 2011.

[9] “Nginx – high performance load balancer, web server, and reverse
proxy.” [Online]. Available: https://www.nginx.com/

[10] “Olio – a web 2.0 toolkit.” [Online]. Available: http://incubator.apache.
org/projects/olio.html

[11] “Faban - helping measure performance.” [Online]. Available: http:
//faban.org



[12] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab et al., “Scaling memcache at
facebook.” in nsdi, vol. 13, 2013, pp. 385–398.

[13] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F. Wenisch,
“Thin servers with smart pipes: designing soc accelerators for mem-
cached,” ACM SIGARCH Computer Architecture News, vol. 41, no. 3,
pp. 36–47, 2013.

[14] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Work-
load analysis of a large-scale key-value store,” in ACM SIGMETRICS
Performance Evaluation Review, vol. 40, no. 1. ACM, 2012, pp. 53–64.

[15] “Elgg - open source social networking engine.” [Online]. Available:
https://elgg.org

[16] J. Summers, T. Brecht, D. Eager, and B. Wong, “Methodologies for
generating http streaming video workloads to evaluate web server per-
formance,” in Proceedings of the 5th Annual International Systems and
Storage Conference. ACM, 2012, p. 2.

[17] D. Mosberger and T. Jin, “httperf – a tool for measuring web server
performance,” vol. 26, no. 3. ACM, 1998, pp. 31–37.

[18] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic characterization:
a view from the edge,” in Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement. ACM, 2007, pp. 15–28.

[19] “Why netflix chose nginx as the heart of its cdn.” [Online].
Available: https://www.nginx.com/blog/why-netflix-chose-nginx-as-the-
heart-of-its-cdn

[20] L. Gammo, T. Brecht, A. Shukla, and D. Pariag, “Comparing and
evaluating epoll, select, and poll event mechanisms,” in Linux Symposium,
vol. 1, 2004.

[21] M. Carbone and L. Rizzo, “Dummynet revisited,” ACM SIGCOMM
Computer Communication Review, vol. 40, no. 2, pp. 12–20, 2010.

[22] “Recommended upload encoding settings.” [Online]. Available: https:
//support.google.com/youtube/answer/1722171

[23] “Akamai’s state of the internet: Q1 2015 report.” [Online]. Avail-
able: https://www.stateoftheinternet.com/resources-connectivity-2015-
q1-state-of-the-internet-report.html

[24] T. o’Reilly, What is web 2.0. ” O’Reilly Media, Inc.”, 2009.
[25] “Powered by elgg.” [Online]. Available: https://elgg.org/powering.php
[26] “Alexa statistics for facebook.” [Online]. Available: http://www.alexa.

com/siteinfo/facebook.com
[27] “Scaling in the linux networking stack.” [Online]. Available: https:

//www.kernel.org/doc/Documentation/networking/scaling.txt
[28] “Introduction to intel ethernet flow director

and memcached performance,” 2014. [Online]. Avail-
able: http://www.intel.com/content/dam/www/public/us/en/documents/
white-papers/intel-ethernet-flow-director.pdf

[29] “Dockerhub.” [Online]. Available: https://hub.docker.com/
[30] E. Cecchet, V. Udayabhanu, T. Wood, and P. Shenoy, “Benchlab: an open

testbed for realistic benchmarking of web applications,” in Proceedings of
the 2nd USENIX conference on Web application development. USENIX
Association, 2011.

[31] P. Pegus, E. Cecchet, and P. Shenoy, “Video benchlab: an open platform
for realistic benchmarking of streaming media workloads,” in Proc. ACM
Multimedia Systems Conference (MMSys), Portland, OR, 2015.

[32] “Standard performance evaluation corporation.” [Online]. Available:
http://www.spec.org/web2009

[33] “Mutilate: high-performance memcached load generator.” [Online].
Available: https://github.com/leverich/mutilate

[34] “Memaslap – an open source c/c++ client library and tools for
the memcached server.” [Online]. Available: http://libmemcached.org/
libMemcached.html


